
A Factorial Performance Evaluation for
Hierarchical Memory Systems

Xian-He Suny� Dongmei Hey Kirk W. Cameronyz Yong Luoz

yDepartment of Computer Science zMail Stop B256
Louisiana State University Los Alamos National Laboratory

Baton Rouge, LA 70803-4020 Los Alamos, New Mexico 87545
fsun,dheg@bit.csc.lsu.edu fkirk,yonglg@lanl.gov

Abstract

In this study, we introduce an evaluation methodology
for advanced memory systems. This methodology is based
on statistical factorial analysis. It is two fold: it first
determines the impact of memory systems and applica-
tion programs toward overall performance; it also iden-
tifies the bottleneck in a memory hierarchy and provides
cost/performance comparisons via scalability analysis. Dif-
ferent memory systems can be compared in terms of mean
performance or scalability over a range of codes and prob-
lem sizes. Experimental testing has been performed on De-
partment of Energy’s Accelerated Strategic Computing Ini-
tiative (ASCI) machines and benchmarks available at the
Los Alamos National Laboratory to validate this newly pro-
posed methodology. Experimental and analytical results
show this methodology is an effective tool for memory sys-
tem evaluation and design.

1 Introduction

Various advanced memory systems have been developed
to manage the increasingly wide disparity between central
processing unit (CPU) speed and data access speed. Per-
formance evaluation of these hierarchical memory systems,
however, is very challenging. There are a variety of means
by which the impact of memory latency on computer per-
formance can be diminished by the computer architecture,
as described in [1]. In addition, the performance and opti-
mization requirements vary with problem sizes.

Based on statistical factorial analysis and performance
scalability analysis, in this paper we propose a methodol-

� This author was supported in part by NSF under grant ASC-9720215,
by LSU under 1998 COR award, and by Louisiana Education Quality
Support Fund.

ogy for examining the effectiveness of both hardware and
software memory latency hiding techniques of a memory
system. This methodology consists of four levels of evalu-
ation. For a set of codes and a set of machines, we first de-
termine the effect of code, machine, and code-machine in-
teraction on performance respectively. If a main or interac-
tion effect exists, then, in the second level of evaluation, the
code and/or machine is classified based on certain criteria
to determine the cause of the effect. The first two levels of
evaluation are designed to detect the characteristics of codes
and their influence on different memory systems. They are
based on average performances over the ranges of problem
size interested in. The last two levels of evaluation deter-
mine the performance variation when problem sizes scale
up and are based on scalability analysis which is a new ap-
proach for memory system evaluation. Level three evalua-
tion is the scalability evaluation of the underlying memory
system for a given code. Level four evaluation conducts
a more detailed examination on the component contribution
of the memory system toward the final scalability. The com-
bination of the four levels of evaluation makes the proposed
methodology adaptive, effective, and more appropriate for
advanced memory systems than existing methodologies.

The Silicon Graphics Inc. (SGI) Origin2000 system and
a previous SGI architecture, the PowerChallenge system,
have been used as the test-bed to illustrate the newly pro-
posed methodology. The single-processor performance (in
terms of cycles per instruction,cpi) of the two machines are
compared and analyzed. Evaluation results given by this
methodology are confirmed by measured results and by a
previously-reported performance model. The comparison
of these two machines is of particular interest because they
both use the same compute node, a 200-MHz MIPS R10000
processor [2] [3], but the memory subsystems of the two ar-
chitectures are vastly different. Although improvement in
the Origin memory network has important consequences for



system-wide, multiprocessor performance, Origin single-
node performance benefits as well.

We use a benchmark set consisting of applications from
the Los Alamos portion of the ASCI workload. This set has
five codes. They are HEAT, SWEEP, DSWEEP, HYDRO,
and HYDROT. We give a brief introduction of the method
and present some of the implementation results in the fol-
lowing two sections. Interested readers should refer to [4]
for detailed information.

2 A Methodology for Hierarchical Memory
Systems

We have developed a hierarchical evaluation methodol-
ogy for advanced memory systems. This methodology con-
sists of four levels of evaluation. All of the four levels of
evaluation are based on two-factor factorial and regression
statistical methods as given in [4, 5].

Level One : Main Effect
Level one evaluation uses a two-factor factorial experiment
to find the effects of code and machine. Using the two fac-
tors code and machine, it detects the overall effect of code,
machine, and their interaction on the final performance.
The dependent variable for the two-factor factorial design
is cpi. The random samples for each of the code-machine
level combinations are chosen from different problem sizes
within the interested problem size range. So, the effective
comparison is based on the mean performance over differ-
ent problem sizes. If code effect exists, we conclude that
the codes have different memory reference patterns which
diverge memory access time. When machine effect exists
the memory system difference on the machines does make
a difference in performance. Finally, when code-machine
interaction effects exist the memory system difference has
a different impact on different memory reference patterns.
Notice that all these effects are overall effects of codes and
machines. Any of the effects that exist deserve further in-
vestigation to identify the source or sources.

Level Two: Code/Machine Classification
Level one evaluation detects the overall effect of code, ma-
chine, and their interaction on performance. When these
effects exist, we would like to know the contribution of
each code/machine toward the effects and to identify the
outstanding code/machine for more detailed study. The key
technique to single out outstanding contributors is to find
the relative performance of a code/machine with that of oth-
ers. Statistical classification methods provide a means to
group code/machine based on their relative performance.

The Contrast method and Post Hoc comparisons [4] are
classical statistical methods for classification. We have used
the contrast method and all the four Post Hoc methods in our

study. These methods have different classification criteria.
If two machines belong to the same category, then statisti-
cally they are the same, for the set of codes and under the
interested range of problem sizes. If two codes belong to
two different categories, then they have different memory
reference/computation patterns. A good general purpose
machine should not deliver a widecpi distribution among
codes.

Level Three: Scalability Comparison
The basic statistical method for memory scalability evalu-
ation is the regression method given in [4]. The two fac-
tors are problem size and machine. The regression method
does not measure data scalability directly, for which a for-
mal quantitative definition of scalability is required. In-
stead, it gives a statistical relative comparison of two or
more machines for a given code. Problem size increase may
change the performance of a code-machine combination.
This change varies with code, machine, and code-machine
combination. It forms the base of scalability comparison.
Usingcpi as the measurement, with the same code on two
different machines, if the interaction of the two variations
is negative then the second machine has a better scalability;
if the interaction of the two variations is zero then the two
machines have the same scalability; otherwise, the first ma-
chine has a better scalability.

Level Four: Memory Hierarchy
The performance of a code may vary with problem size
and the variation is different over different memory archi-
tectures. The last step of our evaluation methodology is
designed to locate memory components which cause the
variation. Level four evaluation compares the performance
variation of primary components of the underlying memory
systems. Combined with the level two evaluation, this eval-
uation determines the ability of each memory component in
handling different memory reference patterns and suggests
possible improvements at the component level.

The basic statistical method used in level four evaluation
is the same as that of level three evaluation, except for the
dependent variables. The actual design of level four eval-
uation varies with the underlying memory structure. The
memory hierarchy of SGI PowerChallenge and Origin2000
has four primary components:L1 cache,L2 cache,out-
standing cache misses, and main memory.L1, L2 hit ratio
can be derived using hardware counters provided on-board
the SGI microprocessor. For this reason we chooseL1 and
L2 as the dependent variables.



3 Evaluation of SGI PowerChallenge and
Origin2000

In our experimental testing, the two machines, Pow-
erChallenge and Origin2000, are assigned machine level
1 and level 2, respectively. The five codes, HEAT, HY-
DRO, SWEEP, DSWEEP, and HYDROT, are assigned a
level value of 1, 2, 3, 4, 5, respectively. We have used the
SAS solving environment [6] throughout the experimental
evaluation.

The problem sizes used in the experiment range from
N=50 to memory/time constraints. The corresponding
range for the codes are: HEAT = [50, 100], HYDRO = [50,
300], SWEEP = [50, 200], DSWEEP = [50, 200], HYDROT
= [50, 300]. All the experimental data are measured from
single node sequential executions using SGI hardware per-
formance counters.

3.1 Main and Interaction Effects

The relationship between code and machine is first inves-
tigated. To catch the mean relationship over the interested
range of problem sizes, replicate measurements have been
taken for different problem sizes for a given experimental
unit. The GLM procedure of SAS is used to carry the two-
factor factorial experiment for level one evaluation. Table 1
shows results from GLM.

Table 1. Mean Effects Table

Dependent Variable: cpi
Sum of Mean

Source Squares Square F ValuePr > F

Model 112.541 12.5046 27.44 0.0001
Error 46.9437 0.4558
Total 159.4847

R-Square C.V. Root MSE cpi Mean
0.7057 34.6445 0.6751 1.9487

Source Type I SS MS F Value Pr > F

Machine 14.3956 14.3956 31.59 0.0001
Code 93.179 23.2947 51.11 0.0001
M*C 4.9664 1.2416 2.72 0.0334

Table 1 is the mean effects table of the factorial exper-
iment. It consists of two sectors separated by the double-
line. The upper table is for overall effect and the lower ta-
ble is for individual effects. Look at row four of Table 1.
The F value is 27.44 and the probability of F(Pr > F )
is 0.0001. The probability of F is less than 0.05. The hy-
pothesis of overall-effect does not exist is rejected. This

means that code or machine effects exist. The lower table
is a continuation of the upper table to locate the potential
effects. Look at row two of the lower table. The proba-
bility of F is 0:0001 < 0:05, which suggests that machine
main effect exists. The same conclusion can be drawn for
code. For machine and code interaction, the probability of
F is 0.0334, which is again smaller than 0.05. Interaction
effect for code and machine also exists. Evaluation should
be continued to understand these effects.

3.2 Scalability Comparison

Using the regression method discussed in Section 2, we
have conducted scalability comparisons on all of the five
codes over the two machines. Recall that this third step in
our methodology compares the data scalabilities of a given
code on different machines whereas the level two evaluation
grouped codes based on their average performance over the
range of problem sizes. As we discussed in the previous
section, a better memory system should lead to a smaller
cpi, and a more scalable memory system should have a
smallercpi increase, or nocpi increase at all as problem
size scales up. The procedure PROG REG of SAS is used
for the scalability comparison. The response variable iscpi.
Table 2 is generated by PROG REG for the scalability com-
parison of HEAT over problem size range [50,100].

Table 2. Scalability Comparison of HEAT
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 2.4532 0.0507 0.0001

CODE 0.0776 0.0160 0.0001
MEMORY -0.4683 0.0506 0.0001

INTAC 0.0795 0.016 0.0001

In Table 2, the “INTAC” stands for INTerACtion effect.
Recall that the probability to test whether an interaction is
zero is0:05. At the 0.0001 level (see last column of Table
2), the hypothesis of zero effect has been rejected. The in-
teraction effect exists. The parameter estimate of “INTAC”
is 0.0795, which means that the performance difference of
the two machines decreases with problem size. PowerChal-
lenge is more scalable than Origin2000 over the range of
problem sizes. This reduction in difference is very reason-
able. When problem size increases into main memory, the
advantage of having a larger L2 cache fades away. The per-
formances of the two machines, therefore, become closer.
Different codes have different memory access/computing
ratio and have different memory reference patterns. Some
codes have good locality, some do not. Some memory refer-
ence patterns can take advantage of the underlying memory



support, some cannot. These factors and others give codes
different scalabilities on different memory systems. While
the resulting table is not shown, HYDRO has an INTAC
probability level of0:0111 indicating interaction effects ex-
ist for HYDRO. Unlike HEAT, for HYDRO, the parameter
estimate is�0:050885 < 0, which means that the perfor-
mance difference between the two machines increases with
problem size. Origin2000 has a better scalability than Pow-
erChallenge for HYDRO. The scalability improvement may
be due to Origin2000’s larger L2 cache or hardware support
in handling cache misses or faster memory access time. The
results of code SWEEP, DSWEEP and HYDROT are dif-
ferent. The probabilities for rejecting zero interaction ef-
fects for these codes are larger than 0.05. Our no-effect
hypotheses stands. The more advanced memory system of
Origin2000 does not improve the performance difference of
these three codes when problem sizes scale up. The relative
performances over the two machines remain unchanged.

Table 3 lists results generated by PROG REG for scal-
ability analysis of SWEEP. From Table 3, the probability
level of interaction effect is 0.2216, which is greater than
0.05. Therefore, SWEEP has the same scalability on the
two machines. For DSWEEP and HYDROT, the probability
level of interaction effect is0:3002 and0:2799 respectively.

Table 3. Scalability Comparison of SWEEP
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 1.6135 0.0265 0.0001

CODE 0.0494 0.0097 0.0003
MEMORY -0.3901 0.0265 0.0001

INTAC 0.0125 0.0097 0.2216

3.3 Evaluation of Memory Components

The memory systems of the SGI machines consist of
four primary components: L1 cache, L2 cache, outstanding
cache misses, and main memory. In the level four evalua-
tion we examine the role of the four components in scalabil-
ity variation. The same regression method used in scalabil-
ity study is used here. We use SAS procedure PROC REG
to evaluate the relative performance of L1 and L2 cache in-
dependently. The response variable is the cache hit ratio of
L1 and L2 accordingly. The cache hit ratios of L1 and L2
are independent of each other and can be used as indepen-
dent variables. Outstanding cache misses cannot be mea-
sured. However, based on the scalability comparison given
in the previous section, its role in performance variation can

be estimated when the variations of L1 and L2 hit ratio are
known.

Table 4 is the L2 hit-ratio analysis table for HYDRO.
As given in Table 4, the null hypothesis of interaction is
accepted. The hit ratio differences of HYDRO remain the
same for the SGI machines when problem size scales up. As
analyzed in Section 3.2, HYDRO-Origin2000 has a better
scalability than HYDRO-PowerChallenge. This scalability
increase is not due to the larger L2 cache of Origin2000 as
shown by the cache hit ratios across machines. It is due to
the outstanding cache misses ability and faster main mem-
ory access time supported by Origin2000.

Table 4. L2 Hit-Ratio Comparison for HYDRO
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 0.9116 0.0094 0.0001

CODE -0.0115 0.0021 0.0001
MEMORY 0.0463 0.0094 0.0001

INTAC 0.0039 0.0021 0.0771

Table 5 and 6 are the analysis table for L2 cache com-
parison for SWEEP and DSWEEP respectively. By Table
5, interaction effect exists for SWEEP and the effect is neg-
ative. The L2 hit ratio of SWEEP on Origin2000 becomes
relatively smaller compared with that of PowerChallenge
when problem size scales up. Since SWEEP has the same
scalability on these two machines, the main memory con-
tribution and/or the outstanding cache miss ratio must be
improved on Origin2000 when problem size scales up. The
outstanding cache-miss principle and faster main memory
access also work well for SWEEP when problem size is
large.

Table 5. L2 Hit-Ratio Comparison for SWEEP
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 0.8262 0.003 0.0001

CODE -0.0132 0.0011 0.0001
MEMORY 0.0425 0.003 0.0001

INTAC -0.0038 0.0011 0.0047

Like HYDRO, DSWEEP maintains a constant L2 hit-
ratio difference on the two machines. DSWEEP has the
same scalability on the two machines. When L1, L2 hit-
ratio difference remain unchanged, the difference of main
memory contribution toward the final performance is also
unchanged [4]. Therefore, we can conclude that DSWEEP’s



outstanding cache-miss ratio does not vary with problem
size.

Table 6. L2 Hit-Ratio Comparison for DSWEEP
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 0.81 0.008 0.0001

CODE -0.0328 0.004 0.0001
MEMORY 0.0779 0.008 0.0001

INTAC 0.0022 0.004 0.5966

Finally, Table 7 lists the L2 hit-ratio comparison for HY-
DROT. HYDROT has the same effect as SWEEP. Its L2
hit-ratio difference remains the same and has the same scal-
ability on the two machines, as given in the previous sec-
tion. Like SWEEP, HYDROT’s outstanding cache-miss ra-
tio does not change with problem size.

Table 7. L2 Hit-Ratio Comparison for HYDROT
Parameter Standard

Variable Estimate Error Prob > jT j
INTERCEP 0.919 0.0028 0.0001

CODE -0.006 0.0006 0.0001
MEMORY 0.0237 0.0028 0.0001

INTAC -0.0027 0.0006 0.0002

The four-level evaluation methodology proposed in Sec-
tion 2 has been applied to analyze the performance of two
ASCI machines and five benchmarks. It is interesting to
note, that, despite the fact that all the codes had a bet-
ter performance on Origin2000, by level three evaluation
these codes have different relative performance variations
over the two machines when problem size scales up. When
problem size becomes large, the performance difference of
HEAT on these two machines becomes smaller; the perfor-
mance difference of HYDRO on these two machines be-
comes larger; while the differences of the other three codes
remain unchanged. Obtaining the variation in relative per-
formance is important for benchmarking and other perfor-
mance comparisons. For instance, the scalability analysis
shows that the relative performance of HEAT and HYDRO
are more likely to vary with problem size than the other
three codes. A more detailed evaluation, the level four eval-
uation, has found the causes of the scalability difference
over the codes. In addition to a larger L2 cache capac-
ity, the four outstandings for cache misses and the faster
main memory access supported by Origin2000 have played

an important role in performance improvement. This is es-
pecially true for HYDRO and SWEEP.

4 Conclusions

We have proposed a hierarchical statistic methodology
for memory system evaluation. Unlike many existing statis-
tic and stochastic methods, the newly proposed method-
ology is not designed to determine parameters of a pre-
assumed performance model. Instead, it is built on the ap-
proach of relative performance comparison, which is one
of the most important concerns in architectural design and
algorithmic development, and is set to reach a balance of
simplicity and effectiveness. The methodology compares
the relative impact of codes, machines, codes and machines,
and components of machines toward the final performance.
It also compares the relative performance variation when
problem sizes scale up, in terms of scalability. It is a post
evaluation methodology. This newly proposed method can
be used collectively with existing empirical and analytical
models for quantitatively assessing the contribution of low-
level system components toward the final performance.

References

[1] D. Burger, J. Goodman, and A. Kagi, “The declining
effectiveness of dynamic caching for general-purpose
microprocessors.” Tech. Report CS-TR-95-1261, Jan.
1995.

[2] MIPS Technologies, Inc., “R10000 microprocessor
product overview.” MIPS Product Preview, 1995.

[3] K. Yeager, “The MIPS R10000 superscalar micropro-
cessor,”IEEE Micro, pp. 28–40, Apr. 1996.

[4] X.-H. Sun, D. He, K. Cameron, and Y. Luo, “An
adaptive statistical methodology for advanced memory
systems evaluation.” Los Alamos national laboratory
Unclassified technical Report (LAUR), No. 98-4176,
1998.

[5] R. Jain,The Art of Computer System Performance Anal-
ysis. John Wiley & Sons, 1991.

[6] SAS Institute Inc.,SAS User’s Guide. SAS Institute
Inc., 1996.


